Exercise training and obesity in Italian children directly assessed by primary school teachers with tele-cardiology support: A pilot experience

Natale Daniele Brunetti a,⁎, Anna Rita Conoscitore a, Giulia Dellegrottaglie b, Giuseppe Di Giuseppe b, Luisa De Gennaro a, Gianfranco Antonelli c, Angela Bruna d, Matteo Di Biase a

a Department of Medical & Surgical Sciences, University of Foggia, Italy
b Cardio-on-Line Europe s.r.l., Bari, Italy
c Divisione di Cardiologia, Azienda Ospedaliera Policlinico, Bari, Italy
d Department of Clinical and Experimental Medicine, University of Foggia, Italy

⁎ Corresponding author at: Viale Pinto 1 71100 Foggia, Italy. Tel.: +39 338912358; fax: +39 0881745424.
E-mail address: nd.brunetti@unifg.it (N.D. Brunetti).

Worldwide prevalence of childhood obesity has increased greatly during the past three decades [1]. The prevalence doubled or tripled between the early 1970’s and late 1990’s in several countries [2]. It was predicted that by 2010, over 38–40% of children in the North American and European regions would be overweight or obese.

Preventive strategies aimed at reduction of global burden of future obesity should therefore be undertaken very early, possibly starting in childhood or adolescence. School health programs should focus on early identification of children with an impaired exercise training and obesity.

Tele-medicine support is presently applied in several fields of medicine [3–12]; tele-cardiology was shown useful in the management of acute coronary syndrome [13,14], atrial fibrillation [15], syncope [16] and even in implementing strategies of cardiovascular primary care [17]. Tele-medicine support allows “lay” non-medical individuals to deliver medical acts which should be usually done by health-care professionals [18].

We therefore aimed to report on the feasibility and preliminary findings of a pilot experience which evaluated exercise training and obesity in Italian children directly assessed by primary school teachers with tele-cardiology support.

Forty consecutive children attending either 4th or 5th class in an Italian primary school (in Manfredonia, Apulia, Italy) were enrolled in the study. All participants underwent tele-cardiology ECG registration by tele-medicine support at rest (T1) and 2 min after exercise (30 min volleyball match) (T2).

The ECG was recorded by a school teacher who previously attended a 1-hour training in order to acquire the skills needed to record an ECG with a pocket ECG-recorder (Cardiovox P12). The ECGs were sent by telephone connection to a regional tele-cardiology “hub” serving the entire region Apulia, located in Bari, more than 100 km far from Manfredonia, where the primary school was situated. Tele-medicine support was provided by Cardio-on-Line Europe s.r.l. (Bari, Italy) as previously described elsewhere [19]; a cardiologist available 24/7 within tele-cardiology hub promptly read the ECGs which were immediately sent back via the internet, fax or visualized back on smart-phones. The tele-cardiology hub also supports the local emergency medical service 118 Apulia.

Gender, height, weight, waist circumference were also recorded and body mass index (BMI) was calculated and plotted on CDC growth charts for male and female children and adolescents in order to define the grade of obesity. The study was authorized by local supervisory education authorities.

Continuous variables were expressed as mean ± standard deviation and compared with Student’s t-test for unpaired or paired groups as required and dichotomic variables as percentages. Correlations were analyzed with Pearson’s test. A p value <0.05 was considered as statistically significant.

Children’s characteristics are given in Table 1 (Figs. 1–3). Twenty-three percent of population was overweight, 26% obese (Fig. 2). No differences were found among genders excluding height (p < 0.05).

Table 1

<table>
<thead>
<tr>
<th>Population’s characteristics</th>
<th>Mean</th>
<th>Std. dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male gender</td>
<td>50.6%</td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>9.1</td>
<td>0.5</td>
</tr>
<tr>
<td>Height</td>
<td>1.4</td>
<td>0.1</td>
</tr>
<tr>
<td>Weight</td>
<td>38.5</td>
<td>10.7</td>
</tr>
<tr>
<td>Basal heart rate (T1)</td>
<td>97.2</td>
<td>12.0</td>
</tr>
<tr>
<td>Heart rate after exercise (T2)</td>
<td>132.1</td>
<td>16.9</td>
</tr>
<tr>
<td>T2–T1 difference</td>
<td>33.8</td>
<td>18.0</td>
</tr>
<tr>
<td>Body mass index</td>
<td>19.1</td>
<td>3.9</td>
</tr>
<tr>
<td>Waist circumference</td>
<td>68.0</td>
<td>8.2</td>
</tr>
</tbody>
</table>
Electrocardiograms were normal with sinus rhythm in all cases; only one case of supraventricular premature contractions was found. Heart rate rose from a mean value of 97 ± 13 (T1) to 132 ± 17 bpm (T2) after exercise ($p < 0.001$) (Fig. 4).

Heart rate values after exercise were related to body mass index ($r = 0.34$, $p < 0.05$) (Fig. 5) and waist circumference ($r = 0.33$, $p < 0.05$) (Fig. 6).

We showed in this report the preliminary findings of a pilot experience which evaluated exercise training and obesity in Italian children directly assessed by primary school teachers with telecardiology support. The ECG assessment was easily performed by “lay” individuals after a short training. To best of our knowledge these are among the first data on school health programs with “lay” individuals and telemedicine support. Most data on telemedicine for childhood health come from studies assessing the feasibility of remote echocardiography consultation in cases of suspected congenital heart disease [20,21]. Few data instead are available on telemedicine implementation in other childhood contexts [22,23].

The prevalence of overweight/obesity was found rather high, in line with prior reports also coming from Italian populations; in a region-wide registry from Tuscany, Italy, the prevalence of overweight (including obesity) ranged 32–33% in children aged 9 in 2006 [24]. The pediatric obesity continues to rise in parallel with increases in incidence of pediatric type 2 diabetes [25] and insulin resistance in adolescents with type-2 diabetes is associated with impaired exercise capacity [26].

Among 1003 sixth graders (average age 11.5 years) in the mid-west of USA 15% were obese; obese students had higher levels of total cholesterol, low-density lipoprotein cholesterol, triglycerides, blood pressure, and recovery heart rates [27]. They consumed more regular soda and school lunches but were less likely to engage in physical activities. Obese students were more likely to watch television ≥2 h per day.

We also showed as low exercise training in terms of higher heart rates 2 min after exercise is related to clinical markers of obesity such as higher body mass index and waist circumference. Data from the Framingham study documented as resting heart rate is a prognostic marker for long term cardiovascular outcomes in adults [28]. In a recent study, resting heart rate was positively linked in 14,842 children aged 6–18 years to waist circumference, and blood pressure, and negatively associated with age and exercise frequency [29]. Also body mass index, however, is related to long term mortality [30].

Low physical activity was associated with “fat” body-composition indexes in children aged 6–8 years at varied risk of obesity [31]. Obese adolescent boys with metabolic syndrome show low physical performance [32]. In children at risk of obesity physical activity levels were positively associated with lean mass index and negatively associated with fat mass index but not with body mass index [31]. Obese subjects have a marked impairment of heart rate behavior during exercise and in the recovery period, and the blunted increase in heart rate is the most important factor that influences exercise capacity [33]. Peak heart rate, heart rate recovery and chronotropic index are lower in obese subjects,
Even impaired exercise capacity expresses as lower heart rate recovery is related to both obesity and cardiovascular risk. Impaired exercise capacity was related to increased body weight in several studies. Heart rate recovery is associated with obesity traits and related metabolic risk factors in children and adolescents [35]. There is an inverse correlation between heart rate recovery and metabolic risks in healthy children and adolescents [36]. Heart rate reserve was shown as a predictor of cardiovascular and all-cause mortality in men [37]. The risk of mortality was more than twice in subjects with low heart rate recovery [38]. Heart rate recovery following maximal exercise testing is a predictor of cardiovascular disease and all-cause mortality in men with diabetes [39]. Metabolic syndrome is associated with impaired heart rate recovery and low exercise capacity in young male adults [40], although weight loss improves heart rate recovery in overweight and obese men with features of the metabolic syndrome [41]. The improvement in heart rate recovery is significantly correlated with decreases in body weight, body mass index, waist circumference, plasma glucose, serum triglycerides, and triglyceride/high-density lipoprotein ratio.

Fortunately the implementation of school health program may reverse this negative relation between obesity and low physical activity. In obese children, 4 months of daily physical activity and cardiovascular fitness lowered percent body fat, total body fat mass and visceral adipose tissue and increased significantly fat-free mass [42]. Exercise alone reduces insulin resistance in obese children independently of changes in body composition [43].

Tele-cardiology support may therefore be of help in implementing such programs for the future [44]; further studies however are needed to confirm these preliminary data on small population.

In conclusion, we report the preliminary findings of a pilot experience which evaluated exercise training and obesity in Italian children directly assessed by primary school teachers with tele-cardiology support. Heart rate after exercise values were related to obesity. This is a preliminary non randomized study on very small population. The exercise protocol is not standardized and the workload is not exactly quantified.

References

Intravenous administration of Gr-1+CD11b+ myeloid cells increases neovascularization and improves cardiac function after heart infarction

Jianhua Huang a,b,d,⁎,1, Gang Lv a,⁎,1, Yongfen Min b,c, Li Yang b,c, P. Charles Lin b,c

a Key Laboratory of Medical Tissue Engineering of Liaoning Province, First Affiliated Hospital of Liaoning Medical University, Jinzhou, Liaoning, 121000, China
b Department of Radiology Oncology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
c Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD 21702, USA
d Department of Surgical Laboratory, First Affiliated Hospital of Liaoning Medical University, Jinzhou, Liaoning, 121000, China

ARTICLE INFO

Article history:
Received 19 March 2013
Accepted 23 March 2013
Available online 16 April 2013

Keywords:
- Gr-1+CD11b+ myeloid cells
- Angiogenesis
- Vasculogenesis
- Heart infarction
- Cell therapy

The relative importance of bone marrow-derived cell populations to adult neovascularization is not clear. There are increasing evidences that myeloid cell lineage may play a role in neovascularization [1–4]. In a previous report, we demonstrated that Gr-1+CD11b+ myeloid cells improve both angiogenesis and vasculogenesis in tumor [1]. A recent report by Kim et al. showed that muscle-derived Gr1(dim)CD11b(+) myeloid cells enhance neovascularization in an ischemic hind limb model [3]. Similarly, a study with the same ischemic hindlimb model also verified the enhanced neovascularization properties uniquely associated with progenitor cells derived from common myeloid progenitors [4]. In the present study, we further investigated whether intravenous administration of Gr-1+CD11b+ myeloid cells increases neovascularization and improves cardiac function after heart infarction. C57BL/6 mice were purchased from Jackson Lab. All animals received humane care and the study protocols were approved by the Vanderbilt Medical University Animal Care and Use Committee. We sorted Gr-1+CD11b+ myeloid cells from the spleens of mice as previously described [5]. To investigate whether Gr-1+CD11b+ myeloid cells increase angiogenesis in vitro, we cultured Gr-1+CD11b+ myeloid cells with aortic ring [6]. At the seventh day, we found that endothelial sprouts in Gr-1+CD11b+ myeloid cell treated group are significantly more than that in no cell treated group (23.2 ± 3.7 versus 13.4 ± 2.4 control, p < 0.01, n = 5 in each group. Fig. 1A and B), which indicated that Gr-1+CD11b+ myeloid cells increase angiogenesis in vitro. In order to see whether Gr-1+CD11b+ myeloid cells increase angiogenesis in vivo, we performed dorsal window model in mice [7]. We injected Gr-1+CD11b+ myeloid cells into tail vain of mice to see whether injected Gr-1+CD11b+ myeloid cells home to the site of window chamber. By tracing Gr-1+CD11b+ myeloid cells marked with PKH-26 (Fig. 1C-a), we found that the Gr-1+CD11b+ myeloid cells home to the site of the window chamber after intravenous injection (Fig. 1C-b). We further found the intravenous injection of Gr-1+CD11b+ myeloid cells that obviously increase blood vessel branches

⁎ Corresponding author at: Key Laboratory of Medical Tissue Engineering of Liaoning Province, First Affiliated Hospital of Liaoning Medical University, Renmin street, 5-2#, Guta District, Jinzhou, Liaoning, 121000, China. Tel.: +86 419 419 7073; fax: +86 419 416 7074.
1 E-mail address: hjhdr@hotmail.com (J. Huang).
2 These authors contributed equally.